Exploring the NHC Advisories and Sea Surface Height during Hurricane Irma

Exploring the NHC Advisories and Sea Surface Height during Hurricane Irma#

Created: 2017-09-09

Updated: 2024-09-18

This notebook aims to demonstrate how to create a simple interactive GIS map with the National Hurricane Center predictions [1] and the observed sea surface height from CO-OPS [2].

  1. https://www.nhc.noaa.gov/gis/

  2. https://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/

First we have to download the National Hurricane Center (NHC) GIS 5 day predictions data for Irma.

NHC codes storms are coded with 8 letter names:

  • 2 char for region al → Atlantic

  • 2 char for number 11 is Irma

  • and 4 char for year, 2017

Browse https://www.nhc.noaa.gov/gis/archive_wsurge.php?year=2017 to find other hurricanes code.

code = "al112017"
hurricane = f"{code}_5day"
import sys  # noqa
from pathlib import Path
from urllib.request import urlopen, urlretrieve

import lxml.html


def url_lister(url):
    urls = []
    connection = urlopen(url)
    dom = lxml.html.fromstring(connection.read())
    for link in dom.xpath("//a/@href"):
        urls.append(link)
    return urls


def download(url, path):
    sys.stdout.write(fname + "\n")
    path = Path(path)
    if not path.is_file():
        urlretrieve(url, filename=str(path), reporthook=progress_hook(sys.stdout))
        sys.stdout.write("\n")
        sys.stdout.flush()


def progress_hook(out):
    """
    Return a progress hook function, suitable for passing to
    urllib.retrieve, that writes to the file object *out*.
    """

    def it(n, bs, ts):
        got = n * bs
        if ts < 0:
            outof = ""
        else:
            # On the last block n*bs can exceed ts, so we clamp it
            # to avoid awkward questions.
            got = min(got, ts)
            outof = "/%d [%d%%]" % (ts, 100 * got // ts)
        out.write("\r  %d%s" % (got, outof))
        out.flush()

    return it
nhc = "https://www.nhc.noaa.gov/gis/forecast/archive/"

# We don't need the latest file b/c that is redundant to the latest number.
fnames = [
    fname
    for fname in url_lister(nhc)
    if fname.startswith(hurricane) and "latest" not in fname
]
base = Path(".").joinpath("data", hurricane).resolve()

if not base.is_dir():
    base.mkdir(parents=True)

for fname in fnames:
    url = f"{nhc}/{fname}"
    path = base.joinpath(fname)
    download(url, path)
al112017_5day_001.zip
al112017_5day_002.zip
al112017_5day_003.zip
al112017_5day_004.zip
al112017_5day_005.zip
al112017_5day_006.zip
al112017_5day_007.zip
al112017_5day_008.zip
al112017_5day_009.zip
al112017_5day_010.zip
al112017_5day_011.zip
al112017_5day_012.zip
al112017_5day_013.zip
al112017_5day_014.zip
al112017_5day_015.zip
al112017_5day_016.zip
al112017_5day_017.zip
al112017_5day_018.zip
al112017_5day_018A.zip
al112017_5day_019.zip
al112017_5day_019A.zip
al112017_5day_020.zip
al112017_5day_020A.zip
al112017_5day_021.zip
al112017_5day_021A.zip
al112017_5day_022.zip
al112017_5day_022A.zip
al112017_5day_023.zip
al112017_5day_023A.zip
al112017_5day_024.zip
al112017_5day_025.zip
al112017_5day_026.zip
al112017_5day_026A.zip
al112017_5day_027.zip
al112017_5day_027A.zip
al112017_5day_028.zip
al112017_5day_028A.zip
al112017_5day_029.zip
al112017_5day_029A.zip
al112017_5day_030.zip
al112017_5day_030A.zip
al112017_5day_031.zip
al112017_5day_031A.zip
al112017_5day_032.zip
al112017_5day_032A.zip
al112017_5day_033.zip
al112017_5day_033A.zip
al112017_5day_034.zip
al112017_5day_034A.zip
al112017_5day_035.zip
al112017_5day_035A.zip
al112017_5day_036.zip
al112017_5day_036A.zip
al112017_5day_037.zip
al112017_5day_037A.zip
al112017_5day_038.zip
al112017_5day_038A.zip
al112017_5day_039.zip
al112017_5day_039A.zip
al112017_5day_040.zip
al112017_5day_040A.zip
al112017_5day_041.zip
al112017_5day_041A.zip
al112017_5day_042.zip
al112017_5day_042A.zip
al112017_5day_043.zip
al112017_5day_043A.zip
al112017_5day_044.zip
al112017_5day_044A.zip
al112017_5day_045.zip
al112017_5day_045A.zip
al112017_5day_046.zip
al112017_5day_046A.zip
al112017_5day_047.zip
al112017_5day_047A.zip
al112017_5day_048.zip
al112017_5day_048A.zip
al112017_5day_049.zip
al112017_5day_049A.zip
al112017_5day_050.zip
al112017_5day_050A.zip
al112017_5day_051.zip
al112017_5day_051A.zip
al112017_5day_052.zip

In the cells below we use geopandas to load the data we just downloaded. We will use only the prediction cone (png) and the track points (pts), but feel free to explore this data further, there is plenty more there.

import os

os.environ["CPL_ZIP_ENCODING"] = "UTF-8"
os.environ["TZ"] = "GMT0"
from glob import glob

import geopandas

cones, points = [], []
for fname in sorted(glob(str(base.joinpath(f"{hurricane}_*.zip")))):
    number = fname.split("_")[-1].split(".zip")[0]
    pgn = geopandas.read_file(f"{fname}!{code}-{number}_5day_pgn.shp")
    cones.append(pgn)

    pts = geopandas.read_file(f"{fname}!{code}-{number}_5day_pts.shp")
    # Only the first "obsevartion."
    points.append(pts.iloc[0])

Let’s create a color code for the point track.

colors = {
    "Subtropical Depression": "yellow",
    "Tropical Depression": "yellow",
    "Tropical Storm": "orange",
    "Subtropical Storm": "orange",
    "Hurricane": "red",
    "Major Hurricane": "crimson",
}

Now we can get all the information we need from those GIS files. Let’s start with the event dates.

import dateutil

start = points[0]["FLDATELBL"].strip(" AST")
end = points[-1]["FLDATELBL"].strip(" EDT")

start = dateutil.parser.parse(start)
end = dateutil.parser.parse(end)

And the bounding box to search the data.

from shapely.geometry import LineString
from shapely.ops import unary_union

last_cone = cones[-1]["geometry"].iloc[0]
track = LineString([point["geometry"] for point in points])

polygon = unary_union([last_cone, track])

# Add a buffer to find the stations along the track.
bbox = polygon.buffer(2).bounds

Note that the bounding box is derived from the track and the latest prediction cone.

strbbox = ", ".join(format(v, ".2f") for v in bbox)
print(f"bbox: {strbbox}\nstart: {start}\n  end: {end}")
bbox: -91.91, 14.40, -28.30, 39.45
start: 2017-08-30 08:00:00
  end: 2017-09-11 20:00:00

Now we need to build a filter with those parameters to find the observations along the Hurricane path. We still need to specify:

  • the units for the observations;

  • and the SOS name for the variables of interest.

Next, we can use pyoos to assemble a collector to download the data into a pandas DataFrame.

import cf_units
import pandas as pd
from ioos_tools.ioos import collector2table
from pyoos.collectors.coops.coops_sos import CoopsSos
from retrying import retry


# We need to retry in case of failure b/c the server cannot handle
# the high traffic during events like Irma.
@retry(stop_max_attempt_number=5, wait_fixed=3000)
def get_coops(start, end, sos_name, units, bbox, verbose=False):
    collector = CoopsSos()
    collector.set_bbox(bbox)
    collector.end_time = end
    collector.start_time = start
    collector.variables = [sos_name]
    ofrs = collector.server.offerings
    title = collector.server.identification.title
    config = dict(
        units=units,
        sos_name=sos_name,
    )

    data = collector2table(
        collector=collector,
        config=config,
        col=f"{sos_name} ({units.format(cf_units.UT_ISO_8859_1)})",
    )

    # Clean the table.
    table = dict(
        station_name=[s._metadata.get("station_name") for s in data],
        station_code=[s._metadata.get("station_code") for s in data],
        sensor=[s._metadata.get("sensor") for s in data],
        lon=[s._metadata.get("lon") for s in data],
        lat=[s._metadata.get("lat") for s in data],
        depth=[s._metadata.get("depth", "NA") for s in data],
    )

    table = pd.DataFrame(table).set_index("station_name")
    if verbose:
        print("Collector offerings")
        print(f"{title}: {len(ofrs)} offerings")
    return data, table
ssh, ssh_table = get_coops(
    start=start,
    end=end,
    sos_name="water_surface_height_above_reference_datum",
    units=cf_units.Unit("meters"),
    bbox=bbox,
)

ssh_table
station_code sensor lon lat depth
station_name
Bermuda Biological Station 2695535 urn:ioos:sensor:NOAA.NOS.CO-OPS:2695535:N1 -64.6950 32.3700 None
Atlantic City, NJ 8534720 urn:ioos:sensor:NOAA.NOS.CO-OPS:8534720:A1 -74.4181 39.3567 None
Cape May, NJ 8536110 urn:ioos:sensor:NOAA.NOS.CO-OPS:8536110:A1 -74.9600 38.9683 None
Ship John Shoal, NJ 8537121 urn:ioos:sensor:NOAA.NOS.CO-OPS:8537121:A1 -75.3750 39.3050 None
Brandywine Shoal Light, DE 8555889 urn:ioos:sensor:NOAA.NOS.CO-OPS:8555889:Y1 -75.1130 38.9870 None
... ... ... ... ... ...
Esperanza, Vieques Island, PR 9752695 urn:ioos:sensor:NOAA.NOS.CO-OPS:9752695:A1 -65.4714 18.0939 None
San Juan, La Puntilla, San Juan Bay, PR 9755371 urn:ioos:sensor:NOAA.NOS.CO-OPS:9755371:Y1 -66.1164 18.4592 None
Magueyes Island, PR 9759110 urn:ioos:sensor:NOAA.NOS.CO-OPS:9759110:A1 -67.0464 17.9701 None
Mayaguez, PR 9759394 urn:ioos:sensor:NOAA.NOS.CO-OPS:9759394:Y1 -67.1625 18.2189 None
Mona Island 9759938 urn:ioos:sensor:NOAA.NOS.CO-OPS:9759938:N1 -67.9385 18.0899 None

84 rows × 5 columns

wind_speed, wind_speed_table = get_coops(
    start=start,
    end=end,
    sos_name="wind_speed",
    units=cf_units.Unit("m/s"),
    bbox=bbox,
)

wind_speed_table
station_code sensor lon lat depth
station_name
Bermuda, St. Georges Island, Bermuda 2695540 urn:ioos:sensor:NOAA.NOS.CO-OPS:2695540:C1 -64.7033 32.3733 None
Cape May, NJ 8536110 urn:ioos:sensor:NOAA.NOS.CO-OPS:8536110:C1 -74.9600 38.9683 None
Ship John Shoal, NJ 8537121 urn:ioos:sensor:NOAA.NOS.CO-OPS:8537121:C1 -75.3750 39.3050 None
Lewes, DE 8557380 urn:ioos:sensor:NOAA.NOS.CO-OPS:8557380:C1 -75.1200 38.7817 None
Ocean City Inlet, MD 8570283 urn:ioos:sensor:NOAA.NOS.CO-OPS:8570283:C1 -75.0911 38.3283 None
... ... ... ... ... ...
San Juan, La Puntilla, San Juan Bay, PR 9755371 urn:ioos:sensor:NOAA.NOS.CO-OPS:9755371:C1 -66.1164 18.4592 None
Arecibo, PR 9757809 urn:ioos:sensor:NOAA.NOS.CO-OPS:9757809:C1 -66.7024 18.4805 None
Magueyes Island, PR 9759110 urn:ioos:sensor:NOAA.NOS.CO-OPS:9759110:C1 -67.0464 17.9701 None
Mayaguez, PR 9759394 urn:ioos:sensor:NOAA.NOS.CO-OPS:9759394:C1 -67.1625 18.2189 None
Barbuda, Antigua and Barbuda 9761115 urn:ioos:sensor:NOAA.NOS.CO-OPS:9761115:C1 -61.8206 17.5908 None

69 rows × 5 columns

For simplicity we will use only the stations that have both wind speed and sea surface height and reject those that have only one or the other.

common = set(ssh_table["station_code"]).intersection(wind_speed_table["station_code"])
ssh_obs, win_obs = [], []
for station in common:
    ssh_obs.extend([obs for obs in ssh if obs._metadata["station_code"] == station])
    win_obs.extend(
        [obs for obs in wind_speed if obs._metadata["station_code"] == station]
    )
index = pd.date_range(start=start, end=end, freq="15min")

# Re-index and rename series.
ssh_observations = []
for series in ssh_obs:
    _metadata = series._metadata
    series.index = series.index.tz_localize(None)
    obs = series.reindex(index=index, limit=1, method="nearest")
    obs._metadata = _metadata
    obs.name = _metadata["station_name"]
    ssh_observations.append(obs)

winds_observations = []
for series in win_obs:
    _metadata = series._metadata
    series.index = series.index.tz_localize(None)
    obs = series.reindex(index=index, limit=1, method="nearest")
    obs._metadata = _metadata
    obs.name = _metadata["station_name"]
    winds_observations.append(obs)

Let’s take a look at some stations to see if the data is OK. Below we have a station in Naples, FL along the Gulf of Mexico.

import matplotlib.pyplot as plt

try:
    station = "8725110"

    w = [obs for obs in winds_observations if obs._metadata["station_code"] == station][
        0
    ]
    s = [obs for obs in ssh_observations if obs._metadata["station_code"] == station][0]

    fig, ax = plt.subplots(figsize=(17, 3.75))
    s["2017-9-10":].plot(ax=ax, label="Sea surface height (m)", color="#0000ff")
    ax1 = w["2017-9-10":].plot(
        ax=ax, label="Wind speed (m/s)", color="#9900cc", secondary_y=True
    )
    ax.set_title(w._metadata["station_name"])

    lines = ax.get_lines() + ax.right_ax.get_lines()
    ax.legend(lines, [l.get_label() for l in lines], loc="upper left")
    ax.axhline(0, color="black")

    ax.set_ylabel("Sea surface height (m)", color="#0000ff")
    ax.right_ax.set_ylabel("Wind speed (m/s)", color="#9900cc")

    ax1.annotate(
        "Eye of the hurricane",
        xy=(w["2017-9-10":].argmin().to_pydatetime(), w["2017-9-10":].min()),
        xytext=(5, 10),
        textcoords="offset points",
        arrowprops=dict(arrowstyle="simple", facecolor="crimson"),
    )

    ax.grid(True)
except Exception:
    print(f"Cannot find station {station}")
Cannot find station 8725110
../../../_images/435b71202e17c547c91f3a5d659f8ef773e3b1cd358a644b3f3e3a369d6fb41f.png

We can observe the sea level retreating around 10-Sep 9:00 and then a significant surge after 19:00. The lower winds at beginning of the surge is probably the eye of the hurricane.

For our interactive map we will use bokeh HTML plots instead of the usual raster matplotlib ones to enhance the user experience when exploring the graphs.

from bokeh.embed import file_html
from bokeh.models import HoverTool, LinearAxis, Range1d
from bokeh.plotting import figure
from bokeh.resources import CDN
from folium import IFrame

# Plot defaults.
tools = "pan,box_zoom,reset"
width, height = 750, 250


def make_plot(ssh, wind):
    p = figure(
        toolbar_location="above",
        x_axis_type="datetime",
        width=width,
        height=height,
        tools=tools,
        title=ssh.name,
    )

    p.yaxis.axis_label = "wind speed (m/s)"

    l0 = p.line(
        x=wind.index,
        y=wind.values,
        line_width=5,
        line_cap="round",
        line_join="round",
        legend_label="wind speed (m/s)",
        color="#9900cc",
        alpha=0.5,
    )

    p.extra_y_ranges = {}
    p.extra_y_ranges["y2"] = Range1d(start=-1, end=3.5)

    p.add_layout(LinearAxis(y_range_name="y2", axis_label="ssh (m)"), "right")

    l1 = p.line(
        x=ssh.index,
        y=ssh.values,
        line_width=5,
        line_cap="round",
        line_join="round",
        legend_label="ssh (m)",
        color="#0000ff",
        alpha=0.5,
        y_range_name="y2",
    )

    p.legend.location = "top_left"

    p.add_tools(
        HoverTool(
            tooltips=[
                ("wind speed (m/s)", "@y"),
            ],
            renderers=[l0],
        ),
        HoverTool(
            tooltips=[
                ("ssh (m)", "@y"),
            ],
            renderers=[l1],
        ),
    )
    return p


def make_marker(p, location, fname):
    html = file_html(p, CDN, fname)
    iframe = IFrame(html, width=width + 45, height=height + 80)

    popup = folium.Popup(iframe, max_width=2650)
    icon = folium.Icon(color="green", icon="stats")
    marker = folium.Marker(location=location, popup=popup, icon=icon)
    return marker

Here is the final result. Explore the map by clicking on the map features plotted!

import folium
from folium.plugins import Fullscreen, MarkerCluster
from ioos_tools.ioos import get_coordinates

lon = track.centroid.x
lat = track.centroid.y

m = folium.Map(location=[lat, lon], tiles="OpenStreetMap", zoom_start=4)

Fullscreen(position="topright", force_separate_button=True).add_to(m)

marker_cluster0 = MarkerCluster(name="Observations")
marker_cluster1 = MarkerCluster(name="Past predictions")
marker_cluster0.add_to(m)
marker_cluster1.add_to(m)


url = "http://oos.soest.hawaii.edu/thredds/wms/hioos/satellite/dhw_5km"
w0 = folium.WmsTileLayer(
    url,
    name="Sea Surface Temperature",
    fmt="image/png",
    layers="CRW_SST",
    attr="PacIOOS TDS",
    overlay=True,
    transparent=True,
)

w0.add_to(m)

url = "http://hfrnet.ucsd.edu/thredds/wms/HFRNet/USEGC/6km/hourly/RTV"
w1 = folium.WmsTileLayer(
    url,
    name="HF Radar",
    fmt="image/png",
    layers="surface_sea_water_velocity",
    attr="HFRNet",
    overlay=True,
    transparent=True,
)

w1.add_to(m)


def style_function(feature):
    return {
        "fillOpacity": 0,
        "color": "black",
        "stroke": 1,
        "weight": 0.5,
        "opacity": 0.2,
    }


# Latest cone prediction.
latest = cones[-1]
folium.GeoJson(
    data=latest.__geo_interface__,
    name="Cone prediction as of {}".format(latest["ADVDATE"].values[0]),
).add_to(m)

# Past cone predictions.
for cone in cones[:-1]:
    folium.GeoJson(
        data=cone.__geo_interface__,
        style_function=style_function,
    ).add_to(marker_cluster1)

# Latest points prediction.
for k, row in pts.iterrows():
    date = row["FLDATELBL"]
    hclass = row["TCDVLP"]
    location = row["LAT"], row["LON"]
    popup = f"{date}<br>{hclass}"
    folium.CircleMarker(
        location=location,
        radius=10,
        fill=True,
        color=colors[hclass],
        popup=popup,
    ).add_to(m)

# All the points along the track.
for point in points:
    date = point["FLDATELBL"]
    hclass = point["TCDVLP"]
    location = point["LAT"], point["LON"]
    popup = f"{date}<br>{hclass}"
    folium.CircleMarker(
        location=location,
        radius=5,
        fill=True,
        color=colors[hclass],
        popup=popup,
    ).add_to(m)


# Observations.
for ssh, wind in zip(ssh_observations, winds_observations):
    fname = ssh._metadata["station_code"]
    location = ssh._metadata["lat"], ssh._metadata["lon"]
    p = make_plot(ssh, wind)
    marker = make_marker(p, location=location, fname=fname)
    marker.add_to(marker_cluster0)

folium.LayerControl().add_to(m)

p = folium.PolyLine(get_coordinates(bbox), color="#009933", weight=1, opacity=0.2)

p.add_to(m);
m
Make this Notebook Trusted to load map: File -> Trust Notebook