Using r-obistools and r-obis to explore the OBIS database

Using r-obistools and r-obis to explore the OBIS database#

Created: 2018-02-20

The Ocean Biogeographic Information System (OBIS) is an open-access data and information system for marine biodiversity for science, conservation and sustainable development.

In this example we will use R libraries obistools and robis to search data regarding marine turtles occurrence in the South Atlantic Ocean.

Let’s start by loading the R-to-Python extension and check the database for the 7 known species of marine turtles found in the world’s oceans.

%load_ext rpy2.ipython
%%R -o matches

library(obistools)


species <- c(
    'Caretta caretta',
    'Chelonia mydas',
    'Dermochelys coriacea',
    'Eretmochelys imbricata',
    'Lepidochelys kempii',
    'Lepidochelys olivacea',
    'Natator depressa'
)

matches = match_taxa(species, ask=FALSE)
R[write to console]: 7 names, 0 without matches, 0 with multiple matches
matches
scientificName scientificNameID match_type
1 Caretta caretta urn:lsid:marinespecies.org:taxname:137205 exact
2 Chelonia mydas urn:lsid:marinespecies.org:taxname:137206 exact
3 Dermochelys coriacea urn:lsid:marinespecies.org:taxname:137209 exact
4 Eretmochelys imbricata urn:lsid:marinespecies.org:taxname:137207 exact
5 Lepidochelys kempii urn:lsid:marinespecies.org:taxname:137208 exact
6 Lepidochelys olivacea urn:lsid:marinespecies.org:taxname:220293 exact
7 Natator depressa urn:lsid:marinespecies.org:taxname:344093 exact

We got a nice DataFrame back with records for all 7 species of turtles and their corresponding ID in the database.

Now let us try to obtain the occurrence data for the South Atlantic. We will need a vector geometry for the ocean basin in the well-known test (WKT) format to feed into the robis occurrence function.

In this example we converted a South Atlantic shapefile to WKT with geopandas, but one can also obtain geometries by simply drawing them on a map with iobis maptool.

from pathlib import Path

import geopandas

fname = Path("..", "data", "oceans.shp")

gdf = geopandas.read_file(fname)

sa = gdf.loc[gdf["Oceans"] == "South Atlantic Ocean"]["geometry"].loc[0]

atlantic = sa.wkt
%%R -o turtles -i atlantic
library(robis)


turtles = occurrence(
    species,
    geometry=atlantic,
)

names(turtles)
Retrieved 5000 records of approximately 5620 (88%)
Retrieved 5620 records of approximately 5620 (100%)
  [1] "date_year"                     "scientificNameID"             
  [3] "scientificName"                "dynamicProperties"            
  [5] "superfamilyid"                 "individualCount"              
  [7] "associatedReferences"          "dropped"                      
  [9] "aphiaID"                       "decimalLatitude"              
 [11] "type"                          "taxonRemarks"                 
 [13] "phylumid"                      "familyid"                     
 [15] "catalogNumber"                 "occurrenceStatus"             
 [17] "basisOfRecord"                 "superclass"                   
 [19] "modified"                      "id"                           
 [21] "order"                         "recordNumber"                 
 [23] "georeferencedDate"             "superclassid"                 
 [25] "verbatimEventDate"             "dataset_id"                   
 [27] "decimalLongitude"              "collectionCode"               
 [29] "date_end"                      "speciesid"                    
 [31] "occurrenceID"                  "superfamily"                  
 [33] "suborderid"                    "license"                      
 [35] "date_start"                    "organismID"                   
 [37] "genus"                         "dateIdentified"               
 [39] "ownerInstitutionCode"          "bibliographicCitation"        
 [41] "eventDate"                     "scientificNameAuthorship"     
 [43] "absence"                       "taxonRank"                    
 [45] "genusid"                       "originalScientificName"       
 [47] "marine"                        "subphylumid"                  
 [49] "vernacularName"                "institutionCode"              
 [51] "date_mid"                      "identificationRemarks"        
 [53] "class"                         "suborder"                     
 [55] "nomenclaturalCode"             "orderid"                      
 [57] "datasetName"                   "geodeticDatum"                
 [59] "taxonomicStatus"               "kingdom"                      
 [61] "waterBody"                     "specificEpithet"              
 [63] "classid"                       "phylum"                       
 [65] "species"                       "coordinatePrecision"          
 [67] "organismRemarks"               "subphylum"                    
 [69] "datasetID"                     "occurrenceRemarks"            
 [71] "family"                        "category"                     
 [73] "kingdomid"                     "node_id"                      
 [75] "flags"                         "sss"                          
 [77] "shoredistance"                 "sst"                          
 [79] "bathymetry"                    "coordinateUncertaintyInMeters"
 [81] "eventTime"                     "sex"                          
 [83] "footprintWKT"                  "lifeStage"                    
 [85] "wrims"                         "references"                   
 [87] "year"                          "language"                     
 [89] "day"                           "locality"                     
 [91] "month"                         "samplingProtocol"             
 [93] "eventID"                       "startDayOfYear"               
 [95] "accessRights"                  "country"                      
 [97] "habitat"                       "municipality"                 
 [99] "stateProvince"                 "behavior"                     
[101] "recordedBy"                    "maximumDepthInMeters"         
[103] "georeferenceRemarks"           "minimumElevationInMeters"     
[105] "maximumElevationInMeters"      "minimumDepthInMeters"         
[107] "depth"                         "continent"                    
[109] "fieldNotes"                    "rightsHolder"                 
[111] "associatedMedia"               "taxonConceptID"               
[113] "organismQuantity"              "organismQuantityType"         
[115] "fieldNumber"                   "eventRemarks"                 
[117] "preparations"                  "identifiedBy"                 
[119] "typeStatus"                    "otherCatalogNumbers"          
[121] "locationID"                   
set(turtles["scientificName"])
{'Caretta caretta',
 'Chelonia mydas',
 'Dermochelys coriacea',
 'Eretmochelys imbricata',
 'Lepidochelys kempii',
 'Lepidochelys olivacea'}

Note that there are no occurrences for Natator depressa (Flatback sea turtle) in the South Atlantic. The Flatback sea turtle can only be found in the waters around the Australian continental shelf.

With ggplot2 we can quickly put together a of occurrences over time.

%%R

turtles$year <- as.numeric(format(as.Date(turtles$eventDate), "%Y"))
table(turtles$year)

library(ggplot2)

ggplot() +
 geom_histogram(
     data=turtles,
     aes(x=year, fill=scientificName),
     binwidth=5) +
 scale_fill_brewer(palette='Paired')
../../../_images/07fe9d8e93fd9e7357d6047fe028a9f0dd4f79054a9f2295b75e16520a7e55ce.png

One would guess that the 2010 count increase would be due to an increase in the sampling effort, but the drop around 2010 seems troublesome. It can be a real threat to these species, or the observation efforts were defunded.

To explore this dataset further we can make use of the obistools’ R package. obistools has many visualization and quality control routines built-in. Here is an example on how to use plot_map to quickly visualize the data on a geographic context.

%%R

library(dplyr)

coriacea <- turtles %>% filter(species=='Dermochelys coriacea')
plot_map(coriacea, zoom=TRUE)
R[write to console]: 
Attaching package: ‘dplyr’


R[write to console]: The following objects are masked from ‘package:stats’:

    filter, lag


R[write to console]: The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union
../../../_images/19984d04f40a75e5ed87f7d0f70ca26242c1ee391ad6fd579babe19c46c57590.png

However, if we want to create a slightly more elaborate map with clusters and informative pop-ups, can use the python library folium.instead.

import folium
from pandas import DataFrame


def filter_df(df):
    return df[["institutionCode", "individualCount", "sex", "eventDate"]]


def make_popup(row):
    classes = "table table-striped table-hover table-condensed table-responsive"
    html = DataFrame(row).to_html(classes=classes)
    return folium.Popup(html)


def make_marker(row, popup=None):
    location = row["decimalLatitude"], row["decimalLongitude"]
    return folium.Marker(location=location, popup=popup)
from folium.plugins import MarkerCluster

species_found = sorted(set(turtles["scientificName"]))

clusters = {s: MarkerCluster() for s in species_found}
groups = {s: folium.FeatureGroup(name=s) for s in species_found}
turtles
date_year scientificNameID scientificName dynamicProperties superfamilyid individualCount associatedReferences dropped aphiaID decimalLatitude ... taxonConceptID organismQuantity organismQuantityType fieldNumber eventRemarks preparations identifiedBy typeStatus otherCatalogNumbers locationID
1 2012 urn:lsid:marinespecies.org:taxname:137209 Dermochelys coriacea MachineObservation 987094 1 [{"crossref":{"citeinfo":{"origin":"Robinson, ... 0 137209 -33.500000 ... None None None None None None None None None None
2 1998 urn:lsid:marinespecies.org:taxname:137206 Chelonia mydas None 987094 1 [{"crossref":{"citeinfo":{"origin":"Luschi, P.... 0 137206 -7.226000 ... None None None None None None None None None None
3 2014 urn:lsid:marinespecies.org:taxname:137205 Caretta caretta MachineObservation 987094 1 [{"crossref":{"citeinfo":{"origin":"Coyne, M. ... 0 137205 -29.500000 ... None None None None None None None None None None
4 2015 urn:lsid:marinespecies.org:taxname:220293 Lepidochelys olivacea MachineObservation 987094 1 [{"crossref":{"citeinfo":{"origin":"Coyne, M. ... 0 220293 -14.500000 ... None None None None None None None None None None
5 -2147483648 urn:lsid:marinespecies.org:taxname:137206 Chelonia mydas None 987094 None None 0 137206 -3.883472 ... None None None None None None None None None None
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
5616 2003 urn:lsid:marinespecies.org:taxname:137209 Dermochelys coriacea None 987094 1 [{"crossref":{"citeinfo":{"origin":"Luschi, P.... 0 137209 -32.194000 ... None None None None None None None None None None
5617 1998 urn:lsid:marinespecies.org:taxname:137206 Chelonia mydas None 987094 1 [{"crossref":{"citeinfo":{"origin":"Luschi, P.... 0 137206 -8.895000 ... None None None None None None None None None None
5618 2003 urn:lsid:marinespecies.org:taxname:137209 Dermochelys coriacea None 987094 1 [{"crossref":{"citeinfo":{"origin":"Luschi, P.... 0 137209 -35.069000 ... None None None None None None None None None None
5619 2006 urn:lsid:marinespecies.org:taxname:137209 Dermochelys coriacea MachineObservation 987094 1 [{"crossref":{"citeinfo":{"origin":"Coyne, M. ... 0 137209 -30.500000 ... None None None None None None None None None None
5620 1996 urn:lsid:marinespecies.org:taxname:137209 Dermochelys coriacea None 987094 1 [{"crossref":{"citeinfo":{"origin":"Luschi, P.... 0 137209 -39.724000 ... None None None None None None None None None None

5620 rows × 121 columns

m = folium.Map()

for turtle in species_found:
    df = turtles.loc[turtles["scientificName"] == turtle]
    for k, row in df.iterrows():
        popup = make_popup(filter_df(row))
        make_marker(row, popup=popup).add_to(clusters[turtle])
    clusters[turtle].add_to(groups[turtle])
    groups[turtle].add_to(m)


m.fit_bounds(m.get_bounds())
folium.LayerControl().add_to(m)

m
Make this Notebook Trusted to load map: File -> Trust Notebook

We can get fancy and use shapely to “merge” the points that are on the ocean and get an idea of migrations routes.

%%R -o land

land <- check_onland(turtles)

plot_map(land, zoom=TRUE)
../../../_images/85e013624fecfd53bebf83b16a983e33ae3e264ba7229745bd90a471744cf8f6.png

First let’s remove the entries that are on land.

turtles.set_index("id", inplace=True)
land.set_index("id", inplace=True)
mask = turtles.index.isin(land.index)
ocean = turtles[~mask]

Now we can use shapely’s buffer to “connect” the points that are close to each other to visualize a possible migration path.

from palettable.cartocolors.qualitative import Bold_6
from shapely.geometry import MultiPoint

colors = {s: c for s, c in zip(species_found, Bold_6.hex_colors)}
style_function = lambda color: (
    lambda feature: dict(color=color, weight=2, opacity=0.6)
)

m = folium.Map()

for turtle in species_found:
    df = ocean.loc[ocean["scientificName"] == turtle]
    positions = MultiPoint(
        list(zip(df["decimalLongitude"].values, df["decimalLatitude"].values))
    ).buffer(distance=2)
    folium.GeoJson(
        positions.__geo_interface__,
        name=turtle,
        tooltip=turtle,
        style_function=style_function(color=colors[turtle]),
    ).add_to(m)

m.fit_bounds(m.get_bounds())
folium.LayerControl().add_to(m)

m
Make this Notebook Trusted to load map: File -> Trust Notebook

One interesting feature of this map is Dermochelys coriacea’s migration between Brazilian and African shores.

More information on Dermochelys coriacea and the other Sea Turtles can be found in the species IUCN red list.