Planning a surf trip using IOOS EDS Model Viewer#

Created: 2022-11-25

Updated: 2025-03-18

Author: Mathew Biddle

Resources:

Process:

  1. Look at significant wave height forecast for MD coast (38.2101 °N 75.0867 °W). Look for significant wave heights >1m or some significant increase to narrow down the investigation. This will get you to a 12-24 hour window, typically.

  2. Once you find a blip in wave heights, take a look at concurrent wave periods to see if it’s just a storm or an offshore swell. Typically periods >5 seconds is a good start. That should get you down to a 12 hour window where it might be decent.

  3. Next look at the forecasted wave direction and wind direction/speed. Lots of nuances in these two pieces as wind direction could be bad (onshore) but if speeds are low it could be alright. If wind direction good (offshore) but winds are strong, could be tricky. wave direction informs which spots would catch the swell. Not many features on MD coast (barrier island), so direction not as important. This should get you to a 6 hour’ish window.

  4. Finally, look at tides and water temp (wetsuit or trunks?), sunrise, sunset times. Use https://erddap.sensors.ioos.us/erddap/index.html

  5. Run this process every hour leading up to the event - forecast will get more accurate the closer to the event. I will start looking at real-time buoy obs ~12 hours before the event.

Set up coordinates and time range for forecast#

import datetime

lat = 38.2101
lon = -75.0867

lon360 = 360 + lon  # convert to degrees_east 0-360

time_min = datetime.date.today() - datetime.timedelta(days=1)
time_max = datetime.date.today() + datetime.timedelta(days=7)

time = slice(time_min, time_max)

Put coordinates on a map#

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cartopy.mpl.gridliner import LATITUDE_FORMATTER, LONGITUDE_FORMATTER

projection = ccrs.PlateCarree()
figsize = (9, 9)

title = f"lon:{lon} lat:{lat}"

fig, ax = plt.subplots(figsize=figsize, subplot_kw=dict(projection=projection))
gl = ax.gridlines(draw_labels=True)
gl.top_labels = gl.right_labels = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER

ax.plot(lon, lat, markersize=6, marker="o", color="red")

ax.set_extent([lon - 2, lon + 2, lat - 2, lat + 2], ccrs.PlateCarree())

ax.coastlines("10m")

plt.title(title);
../../../_images/f238cad388bc2b60d51fb6577a834cecd803d59a6cdfb3cc76742307f5004401.png

Query the various models for the appropriate data#

In this cell we iterate through the various THREDDS endpoint to query for data matching the criteria specified above.

We use xarray to make our lives easier by searching for the specified location and time range.

%%time

import datetime

import matplotlib.pyplot as plt
import pandas as pd
import xarray as xr

# initialize figure
fig, ax = plt.subplots(figsize=(10, 10))

urls = {
    "gfsatlocn": "https://tds.ioos.us/thredds/dodsC/ioos/gfswave/atlocn/Best",
    "nwps": "https://tds.ioos.us/thredds/dodsC/ioos/nwps/akq/Best/LatLon_229X153-37p66N-75p76W-3",
    "gfs": "https://tds.ioos.us/thredds/dodsC/ioos/gfswave/global/Best",
}

# initialize output dataframe
df_out = pd.DataFrame({"time": []})

for key in urls.keys():

    print(f"Getting data from {urls[key]}")

    ds = xr.open_dataset(urls[key])

    data = (
        ds.filter_by_attrs(abbreviation="HTSGW")
        .sel(lat=lat, lon=lon360, method="nearest")
        .sel(time=time)
    )
    data.coords["lon"] = (data.coords["lon"] + 180) % 360 - 180
    df = data.to_dataframe().reset_index()
    df["time"] = df["time"].dt.tz_localize("UTC")

    suffix = f"_{key}"

    df_out = pd.merge_ordered(left=df, right=df_out, on="time", suffixes=[suffix, None])

    data.plot.scatter(x="time", y=list(data.data_vars)[0], ax=ax, label=key)


# add legend
ax.legend()

xmin = datetime.datetime.today() - datetime.timedelta(hours=6)
xmax = datetime.datetime.today() + datetime.timedelta(days=7)

# set limits
ax.set_xlim([xmin, xmax])

ax.set_ylabel("Significant height of wind waves [m]")

# add a line for right now
ax.vlines(datetime.datetime.today(), ymin=0, ymax=2.5, color="grey");
Getting data from https://tds.ioos.us/thredds/dodsC/ioos/gfswave/atlocn/Best
Getting data from https://tds.ioos.us/thredds/dodsC/ioos/nwps/akq/Best/LatLon_229X153-37p66N-75p76W-3
Getting data from https://tds.ioos.us/thredds/dodsC/ioos/gfswave/global/Best
CPU times: user 802 ms, sys: 74.3 ms, total: 876 ms
Wall time: 1min 2s
../../../_images/5a4e81c7811705d82f2763f1ff7683b9554cf2b12bbb58665058f194893be3dc.png

Next we are interested in looking at real-time data for a location near our point.#

We can look at the IOOS Sensor Map to find a station and then create a timeseries plot in the tool.

Or, we can use the IOOS Sensor Map ERDDAP to search for stations in our area with appropriate data.

This searches through the ERDDAP for appropriate datasets and returns metadata about each one as a DataFrame.

import pandas as pd
from erddapy import ERDDAP

server = "https://erddap.sensors.ioos.us/erddap/"

e = ERDDAP(
    server=server,
    protocol="tabledap",
    response="csv",
)

kw = {
    "standard_name": "sea_surface_wave_significant_height",
    "min_lon": float(lon - 1),
    "max_lon": float(lon + 1),
    "min_lat": float(lat - 1),
    "max_lat": float(lat + 1),
    "min_time": "now-1day",
    "max_time": "now",
}


search_url = e.get_search_url(response="csv", **kw)

stations = pd.read_csv(search_url)

stations
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
0 NaN NaN https://erddap.sensors.ioos.us/erddap/tabledap... https://erddap.sensors.ioos.us/erddap/tabledap... NaN NaN 224 - Wallops Island, VA (44089) Timeseries data from '224 - Wallops Island, VA... https://erddap.sensors.ioos.us/erddap/metadata... https://erddap.sensors.ioos.us/erddap/metadata... https://erddap.sensors.ioos.us/erddap/info/edu... https://sensors.ioos.us/#metadata/130264/station http://erddap.sensors.ioos.us/erddap/rss/edu_u... https://erddap.sensors.ioos.us/erddap/subscrip... Coastal Data Information Program (CDIP) edu_ucsd_cdip_224
1 NaN NaN https://erddap.sensors.ioos.us/erddap/tabledap... https://erddap.sensors.ioos.us/erddap/tabledap... NaN NaN 263 - Bethany Beach, DE (44084) Timeseries data from '263 - Bethany Beach, DE ... https://erddap.sensors.ioos.us/erddap/metadata... https://erddap.sensors.ioos.us/erddap/metadata... https://erddap.sensors.ioos.us/erddap/info/edu... https://sensors.ioos.us/#metadata/127432/station http://erddap.sensors.ioos.us/erddap/rss/edu_u... https://erddap.sensors.ioos.us/erddap/subscrip... Coastal Data Information Program (CDIP) edu_ucsd_cdip_263
2 NaN NaN https://erddap.sensors.ioos.us/erddap/tabledap... https://erddap.sensors.ioos.us/erddap/tabledap... NaN NaN 44009 (LLNR 168) - DELAWARE BAY 26 NM Southeas... Timeseries data from '44009 (LLNR 168) - DELAW... https://erddap.sensors.ioos.us/erddap/metadata... https://erddap.sensors.ioos.us/erddap/metadata... https://erddap.sensors.ioos.us/erddap/info/gov... https://sensors.ioos.us/#metadata/130602/station http://erddap.sensors.ioos.us/erddap/rss/gov-n... https://erddap.sensors.ioos.us/erddap/subscrip... NOAA National Data Buoy Center (NDBC) gov-ndbc-44009

Let’s get the real-time data#

Now that we know what datasets match our criteria, we can go out and gather the actual values.

dataset_ids = stations["Dataset ID"]

dfs = {}


def request_station(dataset_ids):
    for dataset_id in dataset_ids:
        e.dataset_id = dataset_id

        e.variables = [
            "time",
            "longitude",
            "latitude",
            "sea_surface_wave_significant_height",
            "sea_surface_wave_mean_period",
        ]

        e.constraints = {
            "time>=": "now-2days",
            "time<": "now",
        }

        df = e.to_pandas().dropna()
        df["time (UTC)"] = pd.to_datetime(df["time (UTC)"])
        dfs[dataset_id] = df

    return dfs


dfs = request_station(dataset_ids)

Overlay models with in-situ observations#

import datetime

import pytz

dfs["gdfs"] = df_out[
    [
        "time",
        "Significant_height_of_combined_wind_waves_and_swell_surface_gfs",
        "lat_gfs",
        "lon_gfs",
    ]
].copy()

dfs["nwps"] = df_out[
    [
        "time",
        "Significant_height_of_combined_wind_waves_and_swell_surface_nwps",
        "lat_nwps",
        "lon_nwps",
    ]
].copy()

dfs["gdfs"].rename(
    columns={
        "Significant_height_of_combined_wind_waves_and_swell_surface_gfs": "sea_surface_wave_significant_height (m)",
        "time": "time (UTC)",
        "lat_gfs": "latitude (degrees_north)",
        "lon_gfs": "longitude (degrees_east)",
    },
    inplace=True,
)
dfs["nwps"].rename(
    columns={
        "Significant_height_of_combined_wind_waves_and_swell_surface_nwps": "sea_surface_wave_significant_height (m)",
        "time": "time (UTC)",
        "lat_nwps": "latitude (degrees_north)",
        "lon_nwps": "longitude (degrees_east)",
    },
    inplace=True,
)

dfs.keys()


def station_scatter(df, station, ax):
    ax.plot(
        dates.date2num(df["time (UTC)"]),
        df["sea_surface_wave_significant_height (m)"],
        label=station,
        linestyle="-",
        markersize=2,
    )


fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 5))
ax.set_ylabel("sea_surface_wave_significant_height (m)")
ax.set_xlabel("time (UTC)")
ax.grid(True)


for station, df in dfs.items():
    station_scatter(df, station, ax)
../../../_images/114b80b087189816f517b293b77bb635112f66fa581c93b9269be53219b47cb8.png

Combine the timeseries and map into one figure#

from bokeh.embed import file_html
from bokeh.plotting import figure
from bokeh.resources import CDN
from folium import IFrame

# Plot defaults.
tools = "pan,box_zoom,reset"
width, height = 750, 250


def make_plot(series, station):
    p = figure(
        toolbar_location="above",
        x_axis_type="datetime",
        width=width,
        height=height,
        tools=tools,
        title=station,
    )
    line = p.line(
        x=series.index,
        y=series.values,
        line_width=5,
        line_cap="round",
        line_join="round",
    )
    return p, line


def make_marker(p, location, fname):
    html = file_html(p, CDN, fname)
    iframe = IFrame(html, width=width + 45, height=height + 80)

    popup = folium.Popup(iframe, max_width=2650)
    icon = folium.Icon(color="green", icon="stats")
    marker = folium.Marker(location=location, popup=popup, icon=icon)
    return marker
import folium
import folium.plugins

m = folium.Map()
folium.plugins.Fullscreen().add_to(m)

for station, df in dfs.items():
    lon = df["longitude (degrees_east)"].dropna().unique().squeeze()
    lat = df["latitude (degrees_north)"].dropna().unique().squeeze()
    cols = ["time (UTC)", "sea_surface_wave_significant_height (m)"]
    df = df[cols].set_index("time (UTC)").squeeze()

    df.index = df.index.tz_localize(None)

    p, _ = make_plot(df, station=station)
    marker = make_marker(p, location=(lat, lon), fname=station)
    marker.add_to(m)


m.fit_bounds(m.get_bounds())
m
Make this Notebook Trusted to load map: File -> Trust Notebook